lqed
Calculates the discrete Kalman estimator configuration based on a continuous cost function.
📝Syntax
[L, P, Z, E] = LQED(A, G, C, Q, R, Ts)
📥Input Arguments
Parameter Description
A State matrix: n x n matrix.
G Defines a matrix linking the process noise to the states.
C The output matrix, with dimensions (q x n), where q is the number of outputs.
Q State-cost weighted matrix
R Input-cost weighted matrix
N Optional cross term matrix: 0 by default.
Ts sample time: scalare.
📤Output Arguments
Parameter Description
L Kalman gain matrix.
P Solution of the Discrete Algebraic Riccati Equation.
E Closed-loop pole locations
Z Discrete estimator poles
📄Description

[L, P, Z, E] = LQED(A, G, C, Q, R, Ts) Calculates the discrete Kalman gain matrix L to minimize the discrete estimation error, equivalent to the estimation error in the continuous system.

💡Examples
A = [10     1.2;  3.3     4];
B = [5     0;   0     6];
C = B;
D = [0,0;0,0];
R = [2,0;0,3];
Q = [5,0;0,4];
G = [6,0;0,7];
Ts = 0.004;

[L, P, Z, E] = lqed(A, G, C, Q, R, Ts)
🔗See Also
lqrlqe
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub