lqe
Kalman estimator design for continuous-time systems.
📝Syntax
[L, P, E] = lqe(A, G, C, Q, R, N)
[L, P, E] = lqe(A, G, C, Q, R)
📥Input Arguments
Parameter Description
A State matrix: n x n matrix.
G Defines a matrix linking the process noise to the states.
C The output matrix, with dimensions (q x n), where q is the number of outputs.
Q State-cost weighted matrix
R Input-cost weighted matrix
N Optional cross term matrix: 0 by default.
📤Output Arguments
Parameter Description
L Kalman gain matrix.
P Solution of the Discrete Algebraic Riccati Equation.
E Closed-loop pole locations
📄Description

The function computes the optimal steady-state feedback gain matrix, denoted as L, minimizing a quadratic cost function for a linear discrete state-space system model.

💡Examples
c = 1;
m = 1;
k = 1;
A = [0, 2; -k/m, -c/m];
B = [0; 2/m];
G = [2 0 ; 0 2];
C = [2 0];
Q = [0.02 0; 0 0.02];
R = 0.02;
[l, p, e] = lqe(A, G, C, Q, R)
🔗See Also
lqr
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub