schur
Schur decomposition.
Syntax
- T = schur(M)
- T = schur(M, 'real')
- T = schur(M, 'complex')
- [U, T] = schur(M)
- [U, T] = schur(M, 'complex')
- [U, T] = schur(M, 'real')
Input argument
- M - a numeric value: scalar or square matrix (double or single)
Output argument
- U - unitary matrix
- T - upper triangular matrix
Description
schur(M) computes the schur decomposition.
With the flag 'complex', the complex schur form is upper triangular with the eigenvalues of M on the diagonal.
If A is real, the real schur form is returned.
With the flag 'real', the real schur form has the real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.
Example
X = [1 2; 3 4];
[U, T] = schur(X)
[U, T] = schur(X * i, 'complex')
[U, T] = schur(X * i, 'real')
See also
eig.
History
Version | Description |
---|---|
1.0.0 | initial version |
Author
Allan CORNET