<< slicot_mb03rd | Subroutine Library In COntrol Theory | slicot_mb04md >> |
[A_OUT, JPVT_OUT, TAU, INFO] = slicot_mb04gd(A_IN, JPVT_IN) |
The m-by-n matrix A.
if JPVT(i) .ne. 0, the i-th row of A is permuted to the bottom of P*A (a trailing row); if JPVT(i) = 0, the i-th row of A is a free row.
if m less or equal than n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m-by-m upper triangular matrix R; if m greater or equal than n, the elements on and above the (m-n)-th subdiagonal contain the m-by-n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors
if JPVT(i) = k, then the i-th row of P*A was the k-th row of A.
The scalar factors of the elementary reflectors.
= 0: successful exit.
To compute an RQ factorization with row pivoting of a real m-by-n matrix A: P * A = R * Q.
M = 6;
N = 5;
A_IN = [1. 2. 6. 3. 5.;
-2. -1. -1. 0. -2.;
5. 5. 1. 5. 1.;
-2. -1. -1. 0. -2.;
4. 8. 4. 20. 4.;
-2. -1. -1. 0. -2.];
JPVT_IN = zeros(1, M);
[A_OUT, JPVT_OUT, TAU, INFO] = slicot_mb04gd(A_IN, JPVT_IN)
Version | Description |
---|---|
1.0.0 | initial version |
SLICOT Documentation