<< slicot_ab08nd Subroutine Library In COntrol Theory slicot_mb02md >>

slicot_ag08bd


Zeros and Kronecker structure of a descriptor system pencil.


Syntax


[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)

Input argument


EQUIL

= 'S': Perform balancing (scaling); = 'N': Do not perform balancing.

M

The number of columns of matrix B.

P

The number of rows of matrix C.

A_IN

The leading L-by-N part of this array must contain the state dynamics matrix A of the system.

E_IN

The leading L-by-N part of this array must contain the descriptor matrix E of the system.

B

The leading L-by-M part of this array must contain the input/state matrix B of the system.

C

The leading P-by-N part of this array must contain the state/output matrix C of the system.

D

The leading P-by-M part of this array must contain the direct transmission matrix D of the system.

TOL

A tolerance used in rank decisions to determine the effective rank, which is defined as the order of the largest leading (or trailing) triangular submatrix in the QR (or RQ) factorization with column (or row) pivoting whose estimated condition number is less than 1/TOL.

Output argument


A_OUT

The leading NFZ-by-NFZ part of this array contains the matrix Af of the reduced pencil.

E_OUT

The leading NFZ-by-NFZ part of this array contains the matrix Ef of the reduced pencil.

NFZ

The number of finite zeros.

NRANK

The normal rank of the system pencil.

NIZ

The number of infinite zeros.

DINFZ

The maximal multiplicity of infinite Smith zeros.

NKROR

The number of right Kronecker indices.

NINFE

The number of elementary infinite blocks.

NKROL

The number of left Kronecker indices.

INFZ

The leading DINFZ elements of INFZ contain information on the infinite elementary divisors

KRONR

The leading NKROR elements of this array contain the right Kronecker (column) indices.

KRONL

The leading NKROL elements of this array contain the left Kronecker (row) indices.

INFO

= 0: successful exit;

Description


To extract from the system pencil a regular pencil Af-lambda*Ef which has the finite Smith zeros of S(lambda) as generalized eigenvalues. The routine also computes the orders of the infinite Smith zeros and determines the singular and infinite Kronecker structure of system pencil, i.e., the right and left Kronecker indices, and the multiplicities of infinite eigenvalues.

Used function(s)


AG08BD

Bibliography


http://slicot.org/objects/software/shared/doc/AG08BD.html

Example


L = 9;
N = 9;
M = 3;
P = 3;
TOL= 1.e-7;
EQUIL='N';
A_IN = [1     0     0     0     0     0     0     0     0;
     0     1     0     0     0     0     0     0     0;
     0     0     1     0     0     0     0     0     0;
     0     0     0     1     0     0     0     0     0;
     0     0     0     0     1     0     0     0     0;
     0     0     0     0     0     1     0     0     0;
     0     0     0     0     0     0     1     0     0;
     0     0     0     0     0     0     0     1     0;
     0     0     0     0     0     0     0     0     1];

E_IN = [0     0     0     0     0     0     0     0     0;
     1     0     0     0     0     0     0     0     0;
     0     1     0     0     0     0     0     0     0;
     0     0     0     0     0     0     0     0     0;
     0     0     0     1     0     0     0     0     0;
     0     0     0     0     1     0     0     0     0;
     0     0     0     0     0     0     0     0     0;
     0     0     0     0     0     0     1     0     0;
     0     0     0     0     0     0     0     1     0];

B =[-1     0     0;
     0     0     0;
     0     0     0;
     0    -1     0;
     0     0     0;
     0     0     0;
     0     0    -1;
     0     0     0;
     0     0     0];

C = [ 0     1     1     0     3     4     0     0     2;
      0     1     0     0     4     0     0     2     0;
      0     0     1     0    -1     4     0    -2     2];

D = [ 1     2    -2;
      0    -1    -2;
      0     0     0];
%=============================================================================
% default call for the fortran routine
M = 3; P = 3;
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
%=============================================================================
% Compute poles (we need tp call fortran routine with M = 0, P = 0)
M = 0; P = 0;
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
%=============================================================================
%  Check the observability and compute the ordered set of the observability indices (call the routine with M = 0).
M = 0; P = 3;
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
%=============================================================================
% Check the controllability and compute the ordered set of the controllability indices (call the routine with P = 0)
M = 3; P = 0;
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
%=============================================================================

History


Version Description
1.0.0 initial version

Author


SLICOT Documentation

<< slicot_ab08nd Subroutine Library In COntrol Theory slicot_mb02md >>