betainc
Incomplete beta function
📝Syntax
R = betainc(X, Z, W)
R = betainc(X, Z, W, tail)
📥Input Arguments
Parameter Description
X a real single or real double matrix. It must be in the closed interval [0, 1].
Z a real single or real double matrix. It must be nonnegative.
W a real single or real double matrix. It must be nonnegative.
tail a string 'upper' or 'lower' (default).
📤Output Arguments
Parameter Description
R result of betainc function.
📄Description

betainc computes the incomplete beta function (regularized).

The incomplete beta function is defined as:

$$I_x(a,b) = \frac{B(x; a,b)}{B(a,b)} = \frac{1}{B(a,b)} \int_0^x t^{a-1} (1-t)^{b-1} \, dt$$

where

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} \, dt$$

is the complete beta function, and:

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

The function is normalized so that

$$I_1(a,b) = 1$$.

All arrays must be the same size or any of them can be scalar.

💡Examples
R = betainc(0.5, 1:10, 3)
🔗See Also
gamma
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub