slicot_mb04gd
RQ factorization with row pivoting of a matrix.
📝Syntax
[A_OUT, JPVT_OUT, TAU, INFO] = slicot_mb04gd(A_IN, JPVT_IN)
📥Input Arguments
Parameter Description
A_IN The m-by-n matrix A.
JPVT_IN if JPVT(i) .ne. 0, the i-th row of A is permuted to the bottom of P*A (a trailing row); if JPVT(i) = 0, the i-th row of A is a free row.
📤Output Arguments
Parameter Description
A_OUT if m less or equal than n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m-by-m upper triangular matrix R; if m greater or equal than n, the elements on and above the (m-n)-th subdiagonal contain the m-by-n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors
JPVT_OUT if JPVT(i) = k, then the i-th row of P*A was the k-th row of A.
TAU The scalar factors of the elementary reflectors.
INFO = 0: successful exit.
📄Description

To compute an RQ factorization with row pivoting of a real m-by-n matrix A: P * A = R * Q.

💡Examples
M = 6;
N = 5;
A_IN = [1.    2.    6.    3.    5.;
  -2.   -1.   -1.    0.   -2.;
   5.    5.    1.    5.    1.;
  -2.   -1.   -1.    0.   -2.;
   4.    8.    4.   20.    4.;
  -2.   -1.   -1.    0.   -2.];
JPVT_IN = zeros(1, M);
[A_OUT, JPVT_OUT, TAU, INFO] = slicot_mb04gd(A_IN, JPVT_IN)
Used Functions
MB04GD
📚Bibliography
http://slicot.org/objects/software/shared/doc/MB04GD.html
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub