slicot_ag08bd
Zeros and Kronecker structure of a descriptor system pencil.
📝Syntax
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
📥Input Arguments
Parameter Description
EQUIL = 'S': Perform balancing (scaling); = 'N': Do not perform balancing.
M The number of columns of matrix B.
P The number of rows of matrix C.
A_IN The leading L-by-N part of this array must contain the state dynamics matrix A of the system.
E_IN The leading L-by-N part of this array must contain the descriptor matrix E of the system.
B The leading L-by-M part of this array must contain the input/state matrix B of the system.
C The leading P-by-N part of this array must contain the state/output matrix C of the system.
D The leading P-by-M part of this array must contain the direct transmission matrix D of the system.
TOL A tolerance used in rank decisions to determine the effective rank, which is defined as the order of the largest leading (or trailing) triangular submatrix in the QR (or RQ) factorization with column (or row) pivoting whose estimated condition number is less than 1/TOL.
📤Output Arguments
Parameter Description
A_OUT The leading NFZ-by-NFZ part of this array contains the matrix Af of the reduced pencil.
E_OUT The leading NFZ-by-NFZ part of this array contains the matrix Ef of the reduced pencil.
NFZ The number of finite zeros.
NRANK The normal rank of the system pencil.
NIZ The number of infinite zeros.
DINFZ The maximal multiplicity of infinite Smith zeros.
NKROR The number of right Kronecker indices.
NINFE The number of elementary infinite blocks.
NKROL The number of left Kronecker indices.
INFZ The leading DINFZ elements of INFZ contain information on the infinite elementary divisors
KRONR The leading NKROR elements of this array contain the right Kronecker (column) indices.
KRONL The leading NKROL elements of this array contain the left Kronecker (row) indices.
INFO = 0: successful exit;
📄Description

To extract from the system pencil a regular pencil Af-lambda*Ef which has the finite Smith zeros of S(lambda) as generalized eigenvalues. The routine also computes the orders of the infinite Smith zeros and determines the singular and infinite Kronecker structure of system pencil, i.e., the right and left Kronecker indices, and the multiplicities of infinite eigenvalues.

💡Examples
L = 9;
N = 9;
M = 3;
P = 3;
TOL= 1.e-7;
EQUIL='N';
A_IN = [1     0     0     0     0     0     0     0     0;
     0     1     0     0     0     0     0     0     0;
     0     0     1     0     0     0     0     0     0;
     0     0     0     1     0     0     0     0     0;
     0     0     0     0     1     0     0     0     0;
     0     0     0     0     0     1     0     0     0;
     0     0     0     0     0     0     1     0     0;
     0     0     0     0     0     0     0     1     0;
     0     0     0     0     0     0     0     0     1];

E_IN = [0     0     0     0     0     0     0     0     0;
     1     0     0     0     0     0     0     0     0;
     0     1     0     0     0     0     0     0     0;
     0     0     0     0     0     0     0     0     0;
     0     0     0     1     0     0     0     0     0;
     0     0     0     0     1     0     0     0     0;
     0     0     0     0     0     0     0     0     0;
     0     0     0     0     0     0     1     0     0;
     0     0     0     0     0     0     0     1     0];

B =[-1     0     0;
     0     0     0;
     0     0     0;
     0    -1     0;
     0     0     0;
     0     0     0;
     0     0    -1;
     0     0     0;
     0     0     0];

C = [ 0     1     1     0     3     4     0     0     2;
      0     1     0     0     4     0     0     2     0;
      0     0     1     0    -1     4     0    -2     2];

D = [ 1     2    -2;
      0    -1    -2;
      0     0     0];
%=============================================================================
% default call for the fortran routine
M = 3; P = 3;
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
%=============================================================================
% Compute poles (we need tp call fortran routine with M = 0, P = 0)
M = 0; P = 0;
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
%=============================================================================
%  Check the observability and compute the ordered set of the observability indices (call the routine with M = 0).
M = 0; P = 3;
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
%=============================================================================
% Check the controllability and compute the ordered set of the controllability indices (call the routine with P = 0)
M = 3; P = 0;
[A_OUT, E_OUT, NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL, INFZ, KRONR, INFE, KRONL, INFO] = slicot_ag08bd(EQUIL, M, P, A_IN, E_IN, B, C, D, TOL)
%=============================================================================
Used Functions
AG08BD
📚Bibliography
http://slicot.org/objects/software/shared/doc/AG08BD.html
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub