svd
Singular Value Decomposition.
📝Syntax
s = svd(M)
[U, S, V] = svd(M)
[U, S, V] = svd(M, 0)
[U, S, V] = svd(M, 'econ')
📥Input Arguments
Parameter Description
M a numeric value: matrix (double or single)
📤Output Arguments
Parameter Description
s real vector (singular values) by descending order.
U left singular values.
S real diagonal matrix (singular values)
V right singular values.
📄Description

svd computes the Singular Value Decomposition of a matrix.

For an

$$m \times n$$

matrix M, the SVD is:

$$M = U\Sigma V^T$$

where:

The singular values

$$\sigma_i$$

are arranged in decreasing order:

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq 0$$
💡Examples
X = eye(3, 3);
s = svd(X)
[U, S, V] = svd(X)
🔗See Also
eig
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub