T = schur(M)
T = schur(M, 'real')
T = schur(M, 'complex')
[U, T] = schur(M)
[U, T] = schur(M, 'complex')
[U, T] = schur(M, 'real')
| Parameter | Description |
|---|---|
| M | a numeric value: scalar or square matrix (double or single) |
| Parameter | Description |
|---|---|
| U | unitary matrix |
| T | upper triangular matrix |
schur(M) computes the schur decomposition.
With the flag 'complex', the complex schur form is upper triangular with the eigenvalues of M on the diagonal.
If A is real, the real schur form is returned.
With the flag 'real', the real schur form has the real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.
X = [1 2; 3 4];
[U, T] = schur(X)
[U, T] = schur(X * i, 'complex')
[U, T] = schur(X * i, 'real')
| Version | Description |
|---|---|
| 1.0.0 | initial version |