schur
Schur decomposition.
📝Syntax
T = schur(M)
T = schur(M, 'real')
T = schur(M, 'complex')
[U, T] = schur(M)
[U, T] = schur(M, 'complex')
[U, T] = schur(M, 'real')
📥Input Arguments
Parameter Description
M a numeric value: scalar or square matrix (double or single)
📤Output Arguments
Parameter Description
U unitary matrix
T upper triangular matrix
📄Description

schur(M) computes the schur decomposition.

With the flag 'complex', the complex schur form is upper triangular with the eigenvalues of M on the diagonal.

If A is real, the real schur form is returned.

With the flag 'real', the real schur form has the real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2 blocks on the diagonal.

💡Examples
X = [1 2; 3 4];
[U, T] = schur(X)
[U, T] = schur(X * i, 'complex')
[U, T] = schur(X * i, 'real')
🔗See Also
eig
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub