K = kron(A, B)
| Parameter | Description |
|---|---|
| A | a matrix: scalars, vectors or matrices. |
| B | a matrix: scalars, vectors or matrices. |
| Parameter | Description |
|---|---|
| K | result: Kronecker Tensor Product. |
K = kron(A, B) computes the Kronecker tensor product of matrices A and B.
For matrices
$$A$$of size
$$m \times n$$and
$$B$$of size
$$p \times q$$, the Kronecker product is:
$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}$$The result is an
$$mp \times nq$$matrix.
A = [1, 2; 3, 4];
B = [0, 5; 6, 7];
K = kron(A, B)
| Version | Description |
|---|---|
| 1.0.0 | initial version |