kron
Kronecker tensor product.
📝Syntax
K = kron(A, B)
📥Input Arguments
Parameter Description
A a matrix: scalars, vectors or matrices.
B a matrix: scalars, vectors or matrices.
📤Output Arguments
Parameter Description
K result: Kronecker Tensor Product.
📄Description

K = kron(A, B) computes the Kronecker tensor product of matrices A and B.

For matrices

$$A$$

of size

$$m \times n$$

and

$$B$$

of size

$$p \times q$$

, the Kronecker product is:

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}$$

The result is an

$$mp \times nq$$

matrix.

💡Examples
A = [1, 2; 3, 4];
B = [0, 5; 6, 7];
K = kron(A, B)
🔗See Also
crosshankel
📚Bibliography
https://en.wikipedia.org/wiki/Kronecker_product
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub