kalman
Design Kalman filter for state estimation.
📝Syntax
[kalmf, L, P, M, Z] = kalman(sys, Q, R, N)
[kalmf, L, P, M, Z] = kalman(sys, Q, R, N, sensors, known)
📥Input Arguments
Parameter Description
sys Plant model with process noise: state-space model.
Q Process noise covariance: scalar or matrix.
R Measurement noise covariance: scalar or matrix.
N Noise cross covariance: scalar or matrix.
sensors Measured outputs of sys: vector.
known Known inputs of sys: vector.
📤Output Arguments
Parameter Description
kalmf Kalman estimator: state-space model
L Filter gains: matrix
P Steady-state error covariances: matrix
M Innovation gains of state estimators: matrix
Z Steady-state error covariances: matrix
📄Description

[kalmf, L, P] = kalman(sys, Q, R, N) generates a Kalman filter using the provided plant model sys and noise covariance matrices Q, R, and N.

The function calculates a Kalman filter suitable for application in a Kalman estimator, as depicted in the following diagram.

💡Examples
A = [11.269   -0.4940    1.129; 1.0000         0         0;0    1.0000         0];
B = [-0.3832;  0.5919;  0.5191];
C = [1 0 0];
sys = ss(A,[B, B], C, 0);
Q = 1;
R = 1;
[kEst, l, p, m, z] = kalman(sys, Q, R, [])
🔗See Also
caredare
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub