y = normpdf(x)
y = normpdf(x, mu)
y = normpdf(x, mu, sigma)
| Parameter | Description |
|---|---|
| x | scalar value or array: Values at which to evaluate pdf. |
| mu | scalar value, 0 (default) or array: Mean. |
| sigma | positive scalar value, 1 (default) or array of positive values: Standard deviation. |
| Parameter | Description |
|---|---|
| y | scalar value or array: pdf values. |
normpdf computes the probability density function of the normal (Gaussian) distribution.
The general formula for the normal distribution PDF is:
$$f(x|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$where
$$\mu$$is the mean and
$$\sigma^2$$is the variance.
For the standard normal distribution (
$$\mu = 0, \sigma = 1$$):
$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$x = [-0.2, -0.1, 0, 0.1, 0.2];
R = normpdf(x);
x = [-0.2, -0.1, 0, 0.1, 0.2];
R = normpdf(x, 2, 1);
R = normpdf(0, [-0.2, -0.1, 0, 0.1, 0.2], 1);
| Version | Description |
|---|---|
| 1.0.0 | initial version |