obsvf
Compute observability staircase form.
📝Syntax
[Abar, Bbar, Cbar, T, k] = obsvf(A, B, C)
[Abar, Bbar, Cbar, T, k] = obsvf(A, B, C, tol)
📥Input Arguments
Parameter Description
A State matrix: Nx-by-Nx matrix
B Input-to-state matrix: Nx-by-Nu matrix
C Output-to-state matrix: Ny-by-Nx matrix
tol scalar real (tolerance).
📤Output Arguments
Parameter Description
Abar Observability staircase state matrix.
Bbar Observability staircase input matrix.
Cbar Observability staircase output matrix.
T Similarity transform matrix.
k Vector: number of observable states.
📄Description

obsvf(A, B, C) decomposes the given state-space system, characterized by matrices A, B, and C, into the observability staircase form, resulting in transformed matrices Abar, Bbar, and Cbar.

It also provides a similarity transformation matrix T and a vector k.

The length of vector k corresponds to the number of states in A, and each entry in k signifies the number of observable states factored out at each step of the transformation matrix computation.

The non-zero elements in k indicate the number of iterations needed for T calculation, and the sum of k represents the number of states in Ao, the observable portion of Abar.

💡Examples
A = [-1.5  -0.5; 1     0];
B = [0.5; 0];
C = [0   1];
[Abar, Bbar, Cbar, T, k] = obsvf(A, B, C)
🔗See Also
obsvctrbf
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub