lqry
Form linear-quadratic (LQ) state-feedback regulator with output weighting.
📝Syntax
[K, S, e] = lqry(sys, Q, R, N)
📥Input Arguments
Parameter Description
sys LTI model
Q State-cost weighted matrix
R Input-cost weighted matrix
N Optional cross term matrix: 0 by default.
📤Output Arguments
Parameter Description
K Optimal gain: row vector.
S Solution of the Algebraic Riccati Equation.
e Poles of the closed-loop system: column vector.
📄Description

The function lqry computes and returns the optimal gain matrix (K), the Riccati solution (S), and the closed-loop eigenvalues (e) for a given state-space model (sys) with specified weights (Q, R, N).

The plant data is defined by the matrices A, B, C, and D, representing continuous- or discrete-time dynamics.

If the parameter N is not provided, it defaults to N=0.

The closed-loop eigenvalues are determined by the eigenvalues of the matrix A - B * K.

💡Examples
A = [0.6, 0.25; 0, 0.9];
B = [0; 10];
C = [11, 0];
D = 0;
Q = 2;
R = 1;
[K, S, e] = lqry(A, B, C, D, Q, R)
🔗See Also
lqr
🕔Version History
Version Description
1.0.0 initial version
Edit this page on GitHub